metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Oliver Seewald, Ulrich Flörke,* Gerald Henkel and Tarimala Seshadri

Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstraße 100, D-33098 Paderborn, Germany

Correspondence e-mail: ulrich.floerke@upb.de

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.033 wR factor = 0.071 Data-to-parameter ratio = 20.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di- μ -bromo-bis{bromo[N-(8-quinolyl)-o-phenylenediamine- $\kappa^3 N, N', N''$]manganese(II)}

The title compound, $[Mn_2Br_4(C_{15}H_{13}N_3)_2]$, is the first crystallographically characterized metal complex of the *N*-(8-quinolyl)-*o*-phenylenediamine ligand. The centre of the molecule lies on a crystallographic inversion centre, so the $Mn_2(\mu$ -Br)_2 four-membered ring is planar with Mn—Br bond lengths of 2.6210 (5) and 2.7147 (6) Å.

Comment

Although the tridentate ligand *N*-(8-quinolyl)-*o*-phenylenediamine (8-Q-phen) has been known for a long time (Jensen & Nielsen, 1964), no crystallographic data of any metal complex of this ligand have been published; the title compound, (I) (Fig. 1), represents the first example of this type. The centre of the molecule lies on a crystallographic inversion centre, so that the Mn₂Br₂ ring is planar. The Mn atom has a slightly distorted octahedral coordination involving the two bromide bridges, a terminal bromide and the three Natom donors from an 8-Q-phen ligand with each N atom *trans* to a Br⁻ anion. Similar $XM(\mu_2-X)_2MX$ core geometries are known, for example, Cambridge Structural Database (CSD, *MOGUL* Version 1.7; Allen, 2002) refcodes AZULOW (Wu *et al.*, 2004), QAMBEM (Davies *et al.*, 2004) and QEMREF (Romero *et al.*, 2001).

As in the crystal structure of the free ligand (Seshadri *et al.*, 2004), (II), the mean planes of the quinolyl system (atoms N1/C1–C9) and the benzene ring (atoms C10–C15) are almost perpendicular, with a dihedral angle of 71.57 (8)° between the planes. In the Mn₂Br₂ four-membered ring, the Mn–Br distances are 2.6210 (5) and 2.7147 (6) Å (Table 1). For the terminal Br atom (Br2), the Mn1–Br2 bond length is, as expected, shorter [2.6096 (6) Å]. In other complexes exhibiting Mn– μ -Br units, the corresponding distances range from 2.581 Å (fourfold Mn coordination in GAYWIM; Pohl *et al.*, 1988) to 2.753 Å (sixfold coordination in XEJFIB; Gillon *et*

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 10 August 2005 Accepted 5 September 2005

Online 14 September 2005

Figure 1

View of (I), showing the atom labeling scheme and displacement ellipsoids at the 50% probability level. Unlabeled atoms (and atoms marked by letter A) are related to the labeled atoms by the symmetry operator (1 - x, -y, 2 - z).

Figure 2

The crystal packing viewed approximately along the c axis. The intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in bridging have been omitted.

al., 2000); the terminal Mn-Br bonds in these compounds are 2.456 and 2.645 Å, respectively. In (I), the Mn-N(amine) bond length [2.340(2) Å] is considerably longer than the Mn–N(quinolyl) bond [2.245 (2) Å], which is *trans* to the long $Mn - \mu$ -Br bond.

In the ligand, the C–N bond lengths in (I) (Table 1) and (II) are slightly different for atoms N2 $[1.448 (4)/1.460 (4) \text{ \AA in}]$ (I) versus 1.384/1.425 Å in (II)] and N3 [1.439 (4) Å in (I) versus 1.381 (3) Å in (II)]. The C–N distances for quinolyl atom N1 are, however, essentially the same in (I) and (II). The crystal packing (Fig. 2) displays an intermolecular N2- $H2 \cdot \cdot \cdot Br2^{ii}$ hydrogen bond [symmetry code: (ii) -x + 1, -y +-z + 2], with H···Br = 2.68 Å and N-H···Br = 152° (values corrected for N-H = 1.03 Å), running along the [010] direction.

Experimental

The title compound was obtained by the reaction of equimolar amounts of MnBr₂ (0.5 mmol) and 8-Q-phen in acetonitrile (15 ml). This solution was stirred for 30 min, refluxed for a further 30 mins and then filtered; the Mn complex was crystallized using the vapor pressure equalization method in the presence of diethyl ether. IR (KBr, cm⁻¹): v strong 1498, 1380, 953, 831, 800, 777, 757; medium 3321, 3257, 3186, 1563, 1458, 1311, 1245, 1198, 1085, 1066, 902, 867, 744, 705, 511, 490.

Crystal data

$Mn_2Br_4(C_{15}H_{13}N_3)_2]$	Z = 1
$M_r = 900.09$	$D_x = 1.932 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.8833 (7) Å	Cell parameters from 2034
p = 9.8725 (8) Å	reflections
r = 9.9162 (8) Å	$\theta = 2.5 - 24.9^{\circ}$
$\alpha = 103.055 \ (2)^{\circ}$	$\mu = 6.01 \text{ mm}^{-1}$
$\beta = 110.397 \ (2)^{\circ}$	T = 120 (2) K
$\nu = 97.351 \ (2)^{\circ}$	Prism, colorless
$V = 773.45 (11) \text{ Å}^3$	$0.20 \times 0.10 \times 0.08 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	3837 independent reflections
diffractometer	3167 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.040$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Bruker, 2002)	$h = -11 \rightarrow 11$
$T_{\min} = 0.379, \ T_{\max} = 0.645$	$k = -13 \rightarrow 13$
10807 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F_o^2) + (0.0281P)^2]$
$wR(F^2) = 0.071$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.002$
3837 reflections	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
190 parameters	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Br1-Mn1 ⁱ	2.6210 (5)	N1-C1	1.326 (4)
Br1-Mn1	2.7147 (6)	N1-C9	1.372 (4)
Br2–Mn1	2.6096 (6)	N2-C10	1.448 (4)
Mn1-N1	2.245 (2)	N2-C8	1.460 (4)
Mn1-N2	2.340 (2)	N3-C15	1.439 (4)
Mn1-N3	2.340 (2)		
Mn1 ⁱ -Br1-Mn1	89.813 (17)	Br1 ⁱ -Mn1-Br1	90.187 (17)
N1-Mn1-N2	74.48 (9)		

Symmetry code: (i) -x + 1, -y, -z + 2.

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with N-H = 0.92–0.93 Å, C-H = 0.95 Å and $U_{\rm iso} = 1.2 U_{\rm eq}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Allen, F. H. (2002). Acta Crvst. B58, 380-388.

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Davies, Chr. J., Solan, G. A. & Fawcett, J. (2004). Polyhedron, 23, 3105-3114.

Gillon, A. L., Lewis, G. R., Orpen, A. G., Rotter, S., Starbuck, J., Wang, X.-M., Rodríguez–Martín, Y. & Ruiz–Pérez, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3897–3905.

Jensen, K. A. & Nielsen, P. H. (1964). Acta Chem. Scand. 18, 1-10.

Pohl, S., Saak, W. & Stolz, P. (1988). Z. Naturforsch. Teil B, 43, 171-174.

Romero, I., Collomb, M.-N., Deronizer, A., Llobet, A., Perret, E., Pécaut, J., Le Pape, L. & Lator, J.-M. (2001). *Eur. J. Inorg. Chem.* pp. 69-72.

Seshadri, T., Flörke, U. & Henkel, G. (2004). Acta Cryst. E60, 0399-0400.

Wu, J.–Z., Bouwman, E., Mills, A. M., Spek, A. L. & Reedijk, J. (2004). Inorg. Chim. Acta, 357, 2694–2702.