Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Oliver Seewald, Ulrich Flörke,* Gerald Henkel and Tarimala Seshadri

Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstraße 100, D-33098 Paderborn, Germany

Correspondence e-mail: ulrich.floerke@upb.de

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.033$
$w R$ factor $=0.071$
Data-to-parameter ratio $=20.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-bromo-bis\{bromo[N-(8-quinolyl)-o-phenyl-enediamine- $\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right]$ manganese(II)\}

The title compound, $\left[\mathrm{Mn}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3}\right)_{2}\right.$], is the first crystallographically characterized metal complex of the N -(8-quinol-yl)-o-phenylenediamine ligand. The centre of the molecule lies on a crystallographic inversion centre, so the $\mathrm{Mn}_{2}(\mu-\mathrm{Br})_{2}$ four-membered ring is planar with $\mathrm{Mn}-\mathrm{Br}$ bond lengths of 2.6210 (5) and 2.7147 (6) \AA.

Comment

Although the tridentate ligand N-(8-quinolyl)-o-phenylenediamine (8-Q-phen) has been known for a long time (Jensen \& Nielsen, 1964), no crystallographic data of any metal complex of this ligand have been published; the title compound, (I) (Fig. 1), represents the first example of this type. The centre of the molecule lies on a crystallographic inversion centre, so that the $\mathrm{Mn}_{2} \mathrm{Br}_{2}$ ring is planar. The Mn atom has a slightly distorted octahedral coordination involving the two bromide bridges, a terminal bromide and the three N atom donors from an 8-Q-phen ligand with each N atom trans to a Br^{-}anion. Similar $X M\left(\mu_{2}-X\right)_{2} M X$ core geometries are known, for example, Cambridge Structural Database (CSD, MOGUL Version 1.7; Allen, 2002) refcodes AZULOW (Wu et al., 2004), QAMBEM (Davies et al., 2004) and QEMREF (Romero et al., 2001).

(I)

As in the crystal structure of the free ligand (Seshadri et al., 2004), (II), the mean planes of the quinolyl system (atoms N1/ $\mathrm{C} 1-\mathrm{C} 9$) and the benzene ring (atoms $\mathrm{C} 10-\mathrm{C} 15$) are almost perpendicular, with a dihedral angle of 71.57 (8) ${ }^{\circ}$ between the planes. In the $\mathrm{Mn}_{2} \mathrm{Br}_{2}$ four-membered ring, the $\mathrm{Mn}-\mathrm{Br}$ distances are 2.6210 (5) and 2.7147 (6) \AA (Table 1). For the terminal Br atom (Br 2), the $\mathrm{Mn} 1-\mathrm{Br} 2$ bond length is, as expected, shorter $[2.6096$ (6) Å]. In other complexes exhibiting $\mathrm{Mn}-\mu$ - Br units, the corresponding distances range from $2.581 \AA$ (fourfold Mn coordination in GAYWIM; Pohl et al., 1988) to $2.753 \AA$ (sixfold coordination in XEJFIB; Gillon et

Received 10 August 2005 Accepted 5 September 2005 Online 14 September 2005

Figure 1
View of (I), showing the atom labeling scheme and displacement ellipsoids at the 50% probability level. Unlabeled atoms (and atoms marked by letter A) are related to the labeled atoms by the symmetry operator $(1-x,-y, 2-z)$.

Figure 2
The crystal packing viewed approximately along the c axis. The intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in bridging have been omitted.
al., 2000); the terminal $\mathrm{Mn}-\mathrm{Br}$ bonds in these compounds are 2.456 and $2.645 \AA$, respectively. In (I), the $\mathrm{Mn}-\mathrm{N}$ (amine) bond length $[2.340(2) \AA$] is considerably longer than the $\mathrm{Mn}-\mathrm{N}$ (quinolyl) bond [2.245 (2) \AA] , which is trans to the long $\mathrm{Mn}-\mu$ - Br bond.

In the ligand, the $\mathrm{C}-\mathrm{N}$ bond lengths in (I) (Table 1) and (II) are slightly different for atoms $\mathrm{N} 2[1.448$ (4)/1.460 (4) \AA in (I) versus $1.384 / 1.425 \AA$ in (II)] and N3 [1.439 (4) \AA in (I) versus 1.381 (3) \AA in (II)]. The $\mathrm{C}-\mathrm{N}$ distances for quinolyl atom N1 are, however, essentially the same in (I) and (II). The crystal packing (Fig. 2) displays an intermolecular N2$\mathrm{H} 2 \cdots \mathrm{Br} 2^{\mathrm{ii}}$ hydrogen bond [symmetry code: (ii) $-x+1,-y+1$, $-z+2$], with $\mathrm{H} \cdots \mathrm{Br}=2.68 \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}=152^{\circ}$ (values corrected for $\mathrm{N}-\mathrm{H}=1.03 \AA$), running along the [010] direction.

Experimental

The title compound was obtained by the reaction of equimolar amounts of $\mathrm{MnBr}_{2}(0.5 \mathrm{mmol})$ and 8-Q-phen in acetonitrile (15 ml). This solution was stirred for 30 min , refluxed for a further 30 mins and then filtered; the Mn complex was crystallized using the vapor pressure equalization method in the presence of diethyl ether. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: v strong 1498, 1380, 953, 831, 800, 777, 757; medium 3321, 3257, 3186, 1563, 1458, 1311, 1245, 1198, 1085, 1066, 902, 867, 744, 705, 511, 490.

Crystal data

$\left[\mathrm{Mn}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3}\right)_{2}\right]$
$Z=1$
$M_{r}=900.09$
Triclinic, $P \overline{1}$
$a=8.8833$ (7) £
$b=9.8725$ (8) A
$c=9.9162$ (8) \AA
$\alpha=103.055$ (2) ${ }^{\circ}$
$\beta=110.397$ (2) ${ }^{\circ}$
$\gamma=97.351(2)^{\circ}$
$V=773.45(11) \AA^{3}$

$$
D_{x}=1.932 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 2034 reflections
$\theta=2.5-24.9^{\circ}$
$\mu=6.01 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Prism, colorless
$0.20 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.379, T_{\text {max }}=0.645$
10807 measured reflections

> 3837 independent reflections
> 3167 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.040$
> $\theta_{\max }=28.3^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0281 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.47 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Br} 1-\mathrm{Mn} 1^{\mathrm{i}}$	$2.6210(5)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.326(4)$
$\mathrm{Br} 1-\mathrm{Mn} 1$	$2.7147(6)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.372(4)$
$\mathrm{Br} 2-\mathrm{Mn} 1$	$2.6096(6)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.448(4)$
$\mathrm{Mn} 1-\mathrm{N} 1$	$2.245(2)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.460(4)$
$\mathrm{Mn} 1-\mathrm{N} 2$	$2.340(2)$	$\mathrm{N} 3-\mathrm{C} 15$	$1.439(4)$
$\mathrm{Mn} 1-\mathrm{N} 3$	$2.340(2)$		
$\mathrm{Mn} 1^{\mathrm{i}}-\mathrm{Br} 1-\mathrm{Mn} 1$	$89.813(17)$	$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Br} 1$	$90.187(17)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$74.48(9)$		

Symmetry code: (i) $-x+1,-y,-z+2$.

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{N}-\mathrm{H}=0.92-0.93 \AA, \mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Davies, Chr. J., Solan, G. A. \& Fawcett, J. (2004). Polyhedron, 23, 31053114.

Gillon, A. L., Lewis, G. R., Orpen, A. G., Rotter, S., Starbuck, J., Wang, X.-M., Rodríguez-Martín, Y. \& Ruiz-Pérez, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3897-3905
Jensen, K. A. \& Nielsen, P. H. (1964). Acta Chem. Scand. 18, 1-10.

Pohl, S., Saak, W. \& Stolz, P. (1988). Z. Naturforsch. Teil B, 43, 171-174. Romero, I., Collomb, M.-N., Deronizer, A., Llobet, A., Perret, E., Pécaut, J., Le Pape, L. \& Lator, J.-M. (2001). Eur. J. Inorg. Chem. pp. 69-72.
Seshadri, T., Flörke, U. \& Henkel, G. (2004). Acta Cryst. E60, o399-o400.
Wu, J.-Z., Bouwman, E., Mills, A. M., Spek, A. L. \& Reedijk, J. (2004). Inorg. Chim. Acta, 357, 2694-2702.

